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It has been established in [I], as a result of an analysis of the phenomenon of para- 
metric instability of a tangential discontinuity in an incompressible conducting liquid aris- 
ing under the action of a longitudinal magnetic field oscillating in time about an average 
value <H> # 0, that a variable field stabilizes a discontinuity less effectively than does a 
constant field. The effect of a variable field (the case <H> = 0) on the stability of an in- 
terface of uniform flows of nonmixing conducting and nonconducting liquids has been investi- 
gated in [2] with the neglect of parametric effects, and the qualitatively opposite result 
has been obtained: It has been erroneously claimed that a variable field always exerts a de- 
stabilizing influence. It is shown in this paper that the long-wavelength part of the spec- 
trum of two-dimensional perturbations of an interface of conducting and nonconducting liquids 
is stabilized by a variable field, whereas the instability caused by the field itself is of 
a parametric resonance nature. 

I. In a Cartesian coordinate system Oxyz with the Oz axis directed opposite to the 
force of gravity let the plane z = 0 be the undisturbed interface between a quiescent conduct- 
ing liquid filling the region z > 0 and a heavier nonconducting liquid moving in the region 
z < 0 at a constant velocity u = (ux, uy, 0). We shall investigate the effect of a variable 
magnetic field parallel to the interface on the mechanism of the Kelvin--Helmholtz instability. 
In the unperturbed state the distributions of the magnetic field and the pressure are of the 
form 

H 2 

where ~ = (2Vm/O~) :/= is the thickness of the skin layer, the subscript 1 refers to the region 
z > 0, and the subscript 2 refers to the region z < O. 

At some instant of time, which is taken as the origin in the following, let a vertical 
velocity which is small in comparison with u be imparted to a finite volume of the liquid. 
In the linear formulation the problem of the development of perturbations of the velocities 
vl, v2 = VU~, pressures p: and p~, magnetic fields h:, h2 = V0, and the interface z = ~(x, y, 
t) is written as follows: 

(i.i) d iv  vi  = 0, Pi ~ t  i = - -  Vpi  + ~ f,  AU 2 = 0, A0 ~ 0; 

Oh 1 Ov 1 
a---f--~mAhi:H~x--$7 + G, d i v h l = 0 ,  ( 1 . 2 )  

r o,,o ( %  o .hlz o. j 

t3=  ~h~--N-, 0,0 +uVU2 ; 

og ag a~ a~ ou2. ( i .  3) 
z = 0 : ~ = v l z ,  -~f + u~ ~ + U~ av a= " 

z=O:p~--p~ ~(g(Pl-- Lax~ ay~/ (1.4) 

( o) oo oo 
Z = 0 :  h i = ~-~-z + H c o s  6 o r - - -  T , hi~----~-~, h i z - -  as' ( 1 . 5 )  
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z - - ) -+  ~ : v l - + 0 ,  h i - + 0 ;  z - + - - ~ :  U z - + 0 ,  0-)-0;  ( 1 . 6 )  

t = 0 : ~ = 0 ,  I h = 0 ,  v ~ z = V j ,  ] = 1 , 2 ;  V 1 ( x , y , 0 ) = V  2(x ,y ,0) .  ( 1 . 7 )  

Here a is the surface tension coefficient; it is assumed in the writing of (1.5) that the 
ratio ~/5 is of the first order of smallness. Taking account in (1.7) of the initial per- 
turbations of the interface and the magnetic field only complicates somewhat the calculations, 
but does not result in a qualitative change in the results. 

Let F be the Fourier transformation operator in the coordinates x and y, k = (kx, ky, O) 
be the wave vector, L be the Laplace transformation operator in the time t, and s be the 
parameter of this transformation. Let us introduce the notation 

F~ = ~, l = ~ cos (~t - -  ~/4), F0 = ~, Fv I = w, Fh  I = b, 

Fp~ = q, FU2 = P ,  FV~(x,  g, O ) =  V, L l  = M,  L~ = ~ ,  Lb = B .  

2. It is not difficult to see that with Vj = Vj(y, z) the conducting fluid does not 
perturb the magnetic field in the lower half-space. In this case the problem (1.1)-(1.7) 
has a solution of the form 

0U1 ~ H]hl ,  hi = [ h ~  (y, z, t), 0, 0], Uo = Us (g, z, t), 0 = 0. --  ~ (g, t),  v l  = V U l  (g, z, t), Pl  = - -  O1 ot 4n 

After simple calculations we arrive at the following problem, which describes the development 
of the Fourier components of the perturbation of the interface: 

,2 d q 
(o l  + p2) - 2 o2k u  + [k g (02 - o l )  - p2 (k u )2 + n = o ,  

i = ] / - ~ ;  t = O :  ~1=0 ,  aq d - - t=V .  

The well-known criterion of the stability of a discontinuity of the tangential velocity u = 
(0, Uy, 0) in the presence of the forces of gravity and surface tension [3] follows from the 
condition of boundedness of I~[. Thus, plane perturbations of an interface whose crests are 
parallel to the unperturbed magnetic field are not acted on by the field. 

3. It is evident from the condition of conjugacy of h: x and h2x on the interface (1.5) 
that a dependence of hl on time is exhibited both due to the oscillation of the unperturbed 
field with frequency ~ and due to vibrations of the conducting liquid at hydrodynamic frequen- 
cies ~. The estimates show that when ~/m << i, one can neglect the terms which take account 
of the effect of the hydrodynamical perturbations on h~ appearing on the right-hand side of 
the linearized induction equation (1.2). Changing over in the problem (1.1)-(1.7) to the 
transforms, we obtain, as a result of uncomplicated calculations, 

) ( oObz ' 2. (3.1) 
a-'i- ~ Oz 2 k2w, =- ~ bz 0" 2 ~, 

d2B' k s + t B = 0 ,  " - - i k B ~ 0 ,  m = v m M ' ;  ( 3 . 2 )  
dz--'~ - -  dz 

ehZ ( dTI - ) 
d2a~ -- k2(I ) = O, P = ~- ~F iku~l ; (3.3) 
dz 2 

tl- r o ] q = [ik~bz -- kuS1~(kyb, -- k~bu) -- P2 (3.4) 

ow z d211 bx = ~--~-Hl - -  ikxep, b u iku(p, bz 
ocp . 

z ~ - O :  Ot dt 2' =-- = 0--~" (3.5) 

z = O :  q + P2 -d-[ - i  = g ( P a - - 9 2 )  

H e 

Ow z 
z - + +  c ~ : -~ - - -~0 ,  B---~0; z - - ~ - - e ~ : q ) - - ~ 0 ;  ( 3 . 7 )  

dn 
t = O :  ~ l = O ,  -h- / -=V,  ( 3 . 8 )  
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Having written out the solutions of the boundary-value problems (3.2), (3.3), (3.5), and 
(3.7), 

H N ,  (D k6 ~ § I H M '  

e-  ~h z V k x ky N=~--~S--~_~M, ; =  , - i -+t ,  15=-~-, ? = T  

and performed an inverse Laplace transformation, we find 

li ] } ( r ~ [all (t --  ~) ] /2  f~' HE (z, t), b~=  H e - m ~ E r f \ 2 ~ ] L .  ~Z : §  d T _ f i 2 Z ( z , t ) ,  by 6 (3.9) 
"0 

b~ = i ~ 3  ~ Hz (z, t), ~ ~6 ~ HZ (0, t) ~ ,  

z 

% ( z , t ) =  l ( t - - ~ )  m exp - - a T  4,n~ + r o d  < ~ E r t [ ~ ) j d T ,  E f f z = t - -  e -~2dx.  
0 0 

Bea r ing  (3 .9 )  in  mind,  one can w r i t e  the  s o l u t i o n  of  the  b o u n d a r y - v a l u e  p rob lem ( 3 . 1 ) ,  ( 3 . 5 ) ,  
and (3 .7 )  i n  3Wz/Ot and c a l c u l a t e  the  d e r i v a t i v e  3~Wz/ataz .  Nex t ,  hav ing  s u b s t i t u t e d  (3 .4 )  
i n t o  t he  dynamica l  c o n d i t i o n  on the  i n t e r f a c e  ( 3 . 6 ) ,  we o b t a i n  an e q u a t i o n  which  d e s c r i b e s  
the  deve lopmen t  of  the  F o u r i e r  components  o f  the  p e r t u r b a t i o n  of  the  i n t e r f a c e .  I n t r o d u c i n g  
t he  d i m e n s i o n l e s s  v a r i a b l e s  t ,  = ~ t  and x ,  = ~ ,  we have ( t h e  a s t e r i s k s  a r e  o m i t t e d )  

d2~ 

dr2 o 

) K ( t ,  T ) =  t , 1 / ~  Erft/-~-~ [ eos (2 t - -~ ) - - s inT] ,  

t 

__--2ie ,~-~t  + [ % + s ,  c o s ( 2 t - - ~ ) ] ~ l = % ~ K ( t , ~ ) ~ i ( t - - T ) d %  

Q 2 - V ~ %  s 2 = ] / r ~ F ,  % : •  rj Pl-FP~' ~0 = ~ ' el 6 o) ' 

Pz + P~' 

. :  --~-,  ~, : ~ux -t- ~uy, F 4a (Pl -I- P3) \ (o5 ] " 

] ~- i, 2, 

(3 . I 0 )  

Upon switching to the variable t,, the initial conditions (3.8) are transformed in an obvious 
fashion. We shall denote g = max (i e~ol, Ej), cj = ~j/E, j = i, 2, 3, Co = eo/e. Let us re- 
write the problem (3.10) and (3.8) in the form 

} y ~ +c~  K ( t , ~ ) n ( t - - ' O d ~ ;  t = 0 : n = 0 ,  e = ~ - ~ V .  
o 

(3.11) 

Equation (3.10) is obtained in the approximation I ~/~oI << i. Assuming also ~-~ << i and aver- 
aging (3.11) by the second scheme proposed in [4], we obtain the Cauchy problem for a system 
of two differential equations. Proceeding in the average problem to a single second-order 
equation, we have 

dt  ~ -~-~- % + r  0 + A )  ~ = 0 ;  t = 0 : ~ = 0 ,  -dY 

A (• = " t ~ T + • + __ 
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It follows from this that with the specified parameters of the unperturbed flow those har- 
monics n(kx, ky, t) are stable for which the condition 

(~ux+yuy)2< p--~-2 [~x x gS(p2--pl )+ 8~H2(I+A) +-g-F~ (3.12) 

is satisfied. On the positive half-axis the function A(~) > 0, so that, with kx # O, the 
variable magnetic field exerts a stabilizing effect; the field, just as the force of gravity, 
stabilizes only the long-wavelength part of the spectrum. In the case in which the discon- 
tinuity of the velocity u = (Ux, O, 0) is parallel to the lines of force of the unperturbed 
field, one can obtain from (3.12) a sufficient condition of stability for ~/~ << 1 

\ 0~o2 / 

4. Let us consider the limiting case in which the thickness of the skin layer and the 
amplitude of the wave (which is small in comparison with its length) are of the identical 
order of magnitude. In this situation the perturbation of the magnetic field caused by dis- 
tortion of the interface is comparable in order of magnitude with the unperturbed field, due 
to which the linearized induction equation (1.2) is inapplicable. The problem under discus- 
sion is thereby simplified, since to the assumed degree of accuracy one can replace the skin 
layer with a surface of discontinuity of the tangential component of the magnetic field, on 
which the surface ponderomotive force is localized [5]. In this approximation the distribu- 
tions of the field and the pressure in the unperturbed state are described by the expressions 

IH 2 H ~ pO=___plg z + ~ c o s  2o3t, 

H ~ ---- (H cos ~ot, 0, 0), pO = _ p2gz. 

In this case, one should set h: = 0 in the problem (1.1)-(1.7), and in place of the condi- 
tions (1.5), which are obtained within the framework of the assumption of continuity of the 
field on the interface, it is necessary to formulate for the potential 0 a condition which 
expresses the continuity of only the normal component of the field, and, in addition, to take 
account in the dynamical condition (1.4) of the perturbation of the surface ponderomotive force 

00 H ~  cos cot, 
ax 

Pi,--,P2=~g (Pl- P.~) q- ~-~-~x cos o)t q- ~ , w  + ~ J "  

W i t h  t h e s e  c h a n g e s  i n  t h e  f o r m u l a t i o n  o f  t h e  p r o b l e m  ( 1 . 1 ) - ( 1 . 7  ~) t a k e n  i n t o  a c c o u n t ,  t h e  e q u a -  
t i o n  f o r  ~ ( k x ,  k y ,  t )  t a k e s  t h e  f o r m  

(Pl § P2) -7~ - -  2ip2ku + gk (P2-- Pi) - -  (ku) 2 aka -f- 
at-  

This equation is easily reduced to the standard form of a ~thieu equation. The stability 
diagram of the solutions of the Mathieu equation [6] confirms the qualitative conclusion 
drawn for ~/~ << 1 about the influence of the field on the development of harmonics. In the 
general case, when the ratio ~/~ is not small, it follows from the stability diagram that 
when kx # 0 one can stabilize any harmonic which is unstable without a field by the choice of 
the amplitude H. The effect of the field is of a twofold nature: Stabilizing some regions 
of the spectrum, it moreover causes a parametric instability of the harmonics corresponding 
to other regions of the spectrum. 
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